Machine Learning und Deep Learning mit Design Thinking
Kostenfrei für Dich
durch Förderung
-
Abschlussart: Zertifikat „Design Thinking“
Zertifikat „Machine Learning“
Zertifikat „Deep Learning“ -
Abschlussprüfung: Praxisbezogene Projektarbeiten mit Abschlusspräsentationen
-
Unterrichtszeiten: VollzeitMontag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
-
Dauer: 9 Wochen
Design Thinking
Einführung in Design Thinking (ca. 1 Tag)
Design Thinking Prozess im Überblick
Die wichtigsten Regeln und Phasen des Design Thinking
Praxisorientierte Ansätze und Anwendungen
5 Phasen im realen Projekt (ca. 3 Tage)
Research Phase
Methodischer Input zu qualitativem Research
Umsetzung durch praktische Übungen am realen Projekt
Synthese Phase
Methodischer Input zu Analyse und Synthese
Umsetzung durch praktische Übung am realen Projekt
Ideation Phase
Methodischer Input zu Kreativtechniken und Ideenentwicklung
Umsetzung durch praktische Übung am realen Projekt
Prototyping Phase
Methodischer Input zu Visualisierung und Protoyping (u. a. Mockups, Click Dummys, 3D-Printing und Rapid Prototyping)
Umsetzung durch praktische Übung am realen Projekt
Testing Phase
Methodischer Input zu Testmethoden und Iteration, agiles Vorgehen
Umsetzung durch praktische Übung am realen Projekt
Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI-Technologien im beruflichen Umfeld
Anwendungsmöglichkeiten und Praxis-Übungen
Projektarbeit (ca. 1 Tag)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Machine Learning
Einführung in Machine Learning (ca. 5 Tage)
Warum Machine Learning?
Anwendungsbeispiele
Überwachtes Lernen, Unüberwachtes Lernen, Teilüberwachtes Lernen, Reinforcement Lernen
Beispiele für Datenbestände
Daten kennenlernen
Trainings-, Validierungs- und Testdaten
Daten sichten
Vorhersagen treffen
Überwachtes Lernen (ca. 5 Tage)
Klassifikation und Regression
Verallgemeinerung, Overfitting und Underfitting
Größe des Datensatzes
Algorithmen zum überwachten Lernen
Lineare Modelle
Bayes-Klassifikatoren
Entscheidungsbäume
Random Forest
Gradient Boosting
k-nächste-Nachbarn
Support Vector Machines
Conditional Random Field
Neuronale Netze und Deep Learning
Wahrscheinlichkeiten
Unüberwachtes Lernen (ca. 5 Tage)
Arten unüberwachten Lernens
Vorverarbeiten und Skalieren
Datentransformationen
Trainings- und Testdaten skalieren
Dimensionsreduktion
Feature Engineering
Manifold Learning
Hauptkomponentenzerlegung (PCA)
Nicht-negative-Matrix-Faktorisierung (NMF)
Manifold Learning mit t-SNE
Clusteranalyse
k-Means-Clustering
Agglomeratives Clustering
Hierarchische Clusteranalyse
DBSCAN
Clusteralgorithmen
Evaluierung und Verbesserung (ca. 2 Tage)
Modellauswahl und Modellevaluation
Abstimmung der Hyperparameter eines Schätzers
Kreuzvalidierung
Gittersuche
Evaluationsmetriken
Klassifikation
Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Deep Learning
Einführung Deep Learning (ca. 1 Tag)
Deep Learning als eine Art von Machine Learning
Grundlagen in neuronalen Netzen (ca. 4 Tage)
Perceptron
Berechnung neuronaler Netze
Optimierung der Modellparameter, Backpropagation
Deep‐Learning‐Bibliotheken
Regression vs. Klassifikation
Lernkurven, Überanpassung und Regularisierung
Hyperparameteroptimierung
Stochastischer Gradientenabstieg (SGD)
Momentum, Adam Optimizer
Lernrate
Convolutional Neural Network (CNN) (ca. 2 Tage)
Bildklassifizierung
Convolutional‐Schichten, Pooling‐Schichten
Reshaping‐Schichten, Flatten, Global‐Average‐Pooling
CNN‐Architekturen ImageNet‐Competition
Tiefe neuronale Netze, Vanishing Gradients, Skip‐Verbindungen, Batch‐Normalization
Transfer Learning (ca. 1 Tag)
Anpassen von Modellen
Unüberwachtes Vortrainieren
Image‐Data‐Augmentation, Explainable AI
Regional CNN (ca. 1 Tag)
Objektlokalisierung
Regressionsprobleme
Verzweigte neuronale Netze
Methoden der kreativen Bilderzeugung (ca. 1 Tag)
Generative Adversarial Networks (GAN)
Deepfakes
Diffusionsmodelle
Recurrente neurale Netze (ca. 2 Tage)
Sequenzanalyse
Rekurrente Schichten
Backpropagation through time (BPTT)
Analyse von Zeitreihen
Exploding und Vanishing Gradient Probleme
LSTM (Long Short‐Term Memory)
GRU (Gated Recurrent Unit)
Deep RNN
Deep LSTM
Textverarbeitung durch neuronale Netze (ca. 2 Tage)
Text‐Preprocessing
Embedding‐Schichten
Text‐Klassifizierung
Sentimentanalyse
Transfer‐Learning in NLP
Übersetzungen
Seqence‐to‐Sequence‐Verfahren, Encoder‐Decoder‐Architektur
Sprachmodelle (ca. 1 Tag)
BERT, GPT
Attention‐Schichten, Transformers
Textgeneration‐Pipelines
Summarization
Chatbots
Deep Reinforcement Learning (ca. 1 Tag)
Steuerung dynamischer Systeme
Agentensysteme
Training durch Belohnungen
Policy Gradients
Deep‐Q‐Learning
Bayes'sche neuronale Netze (ca. 1 Tag)
Unsicherheiten in neuronalen Netzen
Statistische Bewertung von Prognosen
Konfidenz, Standardabweichung
Unbalancierte Daten
Sampling‐Methoden
Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.
Nach dem Lehrgang hast du relevante Kenntnisse im Thema Machine Learning. Du kennst die wichtigsten Gründe für die Verwendung des Machine Learning, Anwendungsgebiete sowie die verschiedenen Kategorien und Konzepte des Maschinellen Lernens. Mit Kenntnissen in der Evaluierung und der Verbesserung rundest du dein Wissen ab.
Ebenso kennst du die Einsatzbereiche von Deep Learning und die Funktionsweisen neuronaler Netzwerke. Du verstehst, wie neuronale Netze Objekte in Bildern erkennen können, und bist in der Lage, maschinelles Lernen bereitzustellen und Prozesse zu dokumentieren.
Zusätzlich vermittelt der Kurs den Ansatz des Design-Thinking, mit dem sich innovative Lösungen für komplexe Probleme erarbeiten lassen. Das Vorgehen bei Design-Thinking ist klar strukturiert, iterativ und lässt viel Raum für neue Sichtweisen. Der Lehrgang vermittelt Sinn, Ablauf und Grundsätze der Methode.
Informatiker:innen, Mathematiker:innen, Elektrotechniker:innen sowie Personen mit Studium der (Wirtschafts-) Ingenieurwissenschaften
Machine Learning kommt in zahlreichen Anwendungsgebieten zum Einsatz: Die selbstständige Entwicklung geeigneter Spamfilter für das Internet, die Erstellung präziser Prognosen über Lagerbestände im Bereich Supply Chain Management oder die Entwicklung von Kaufprognosen für einzelne Kundschaft bzw. Kundensegmente im Marketing. Mitarbeiter:innen, die im Fachbereich Machine Learning qualifiziert sind, können branchenübergreifend eingesetzt werden und sind am Arbeitsmarkt entsprechend vielfach nachgefragt.
Mit Deep Learning lassen sich große Datenmengen nach Mustern und Modellen untersuchen. Deshalb kommt es im Rahmen künstlicher Intelligenz häufig für die Gesichts-, Objekt- oder Spracherkennung zum Einsatz, so z. B. bei der medizinischen Bilderkennung, Text- und Spracherkennung im Vertrieb, bei der IT-Datensicherheit oder beim Monitoring von Finanztransaktionen. Fachkräfte mit diesem Wissen können daher vielseitig eingesetzt werden und sind am Arbeitsmarkt entsprechend nachgefragt.
Im Ansatz war Design Thinking eine innovative Methode zur Produktentwicklung, der sich aber mittlerweile auf die gesamte Unternehmenskultur ausgeweitet hat und somit branchenübergreifend gefragt ist.Dein aussagekräftiges Zertifikat gibt detaillierten Einblick in deine erworbenen Qualifikationen und verbessert deine beruflichen Chancen.
Didaktisches Konzept
Deine Dozierenden sind sowohl fachlich als auch didaktisch hoch qualifiziert und werden dich vom ersten bis zum letzten Tag unterrichten (kein Selbstlernsystem).
Du lernst in effektiven Kleingruppen. Die Kurse bestehen in der Regel aus 6 bis 25 Teilnehmenden. Der allgemeine Unterricht wird in allen Kursmodulen durch zahlreiche praxisbezogene Übungen ergänzt. Die Übungsphase ist ein wichtiger Bestandteil des Unterrichts, denn in dieser Zeit verarbeitest du das neu Erlernte und erlangst Sicherheit und Routine in der Anwendung. Im letzten Abschnitt des Lehrgangs findet eine Projektarbeit, eine Fallstudie oder eine Abschlussprüfung statt.
Virtueller Klassenraum alfaview®
Der Unterricht findet über die moderne Videotechnik alfaview® statt - entweder bequem von zu Hause oder bei uns im Bildungszentrum. Über alfaview® kann sich der gesamte Kurs face-to-face sehen, in lippensynchroner Sprachqualität miteinander kommunizieren und an gemeinsamen Projekten arbeiten. Du kannst selbstverständlich auch deine zugeschalteten Trainer:innen jederzeit live sehen, mit diesen sprechen und du wirst während der gesamten Kursdauer von deinen Dozierenden in Echtzeit unterrichtet. Der Unterricht ist kein E-Learning, sondern echter Live-Präsenzunterricht über Videotechnik.
Die Lehrgänge bei alfatraining werden von der Agentur für Arbeit gefördert und sind nach der Zulassungsverordnung AZAV zertifiziert. Bei der Einreichung eines Bildungsgutscheines oder eines Aktivierungs- und Vermittlungsgutscheines werden in der Regel die gesamten Lehrgangskosten von deiner Förderstelle übernommen.
Eine Förderung ist auch über den Europäischen Sozialfonds (ESF), die Deutsche Rentenversicherung (DRV) oder über regionale Förderprogramme möglich. Als Zeitsoldat:in besteht die Möglichkeit, Weiterbildungen über den Berufsförderungsdienst (BFD) zu besuchen. Auch Firmen können ihre Mitarbeiter:innen über eine Förderung der Agentur für Arbeit (Qualifizierungschancengesetz) qualifizieren lassen.