KI-Spezialist:in mit ITIL® 4 Foundation in IT Service Management und PRINCE2® Foundation in Project Management, 7th edition

Kostenfrei für Dich

durch Förderung

Der Kurs führt von den Grundlagen des Machine Learning über die beiden Kategorien überwachtes und unüberwachtes Lernen zum abschließenden Thema Evaluierung und Verbesserung. Außerdem werden die Methoden des Deep Learnings auf Basis von neuronalen Netzen mit dazugehörigen Tools erläutert. Du erlernst zudem die Projektmanagementmethode PRINCE2® und die Prozessoptimierungsmethode ITIL®.
  • Abschlussart: Zertifikat „KI-Spezialist:in“
    Zertifikat „ITIL® 4 Foundation in IT Service Management“
    Zertifikat „PRINCE2® Foundation in Project Management, 7th edition“
  • Zusatzqualifikationen: Zertifikat „Machine Learning“
    Zertifikat „Deep Learning“
  • Abschlussprüfung: Praxisbezogene Projektarbeiten mit Abschlusspräsentationen
    ITIL® 4 Foundation in IT Service Management
    PRINCE2® Foundation in Project Management, 7th edition
  • Unterrichtszeiten: Vollzeit
    Montag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
  • Dauer: 12 Wochen

Machine Learning

Einführung in Machine Learning (ca. 5 Tage)

Warum Machine Learning?

Anwendungsbeispiele

Überwachtes Lernen, Unüberwachtes Lernen, Teilüberwachtes Lernen, Reinforcement Lernen

Beispiele für Datenbestände

Daten kennenlernen

Trainings-, Validierungs- und Testdaten

Daten sichten

Vorhersagen treffen


Überwachtes Lernen (ca. 5 Tage)

Klassifikation und Regression

Verallgemeinerung, Overfitting und Underfitting

Größe des Datensatzes

Algorithmen zum überwachten Lernen

Lineare Modelle

Bayes-Klassifikatoren

Entscheidungsbäume

Random Forest

Gradient Boosting

k-nächste-Nachbarn

Support Vector Machines

Conditional Random Field

Neuronale Netze und Deep Learning

Wahrscheinlichkeiten


Unüberwachtes Lernen (ca. 5 Tage)

Arten unüberwachten Lernens

Vorverarbeiten und Skalieren

Datentransformationen

Trainings- und Testdaten skalieren

Dimensionsreduktion

Feature Engineering

Manifold Learning

Hauptkomponentenzerlegung (PCA)

Nicht-negative-Matrix-Faktorisierung (NMF)

Manifold Learning mit t-SNE

Clusteranalyse

k-Means-Clustering

Agglomeratives Clustering

Hierarchische Clusteranalyse

DBSCAN

Clusteralgorithmen


Evaluierung und Verbesserung (ca. 2 Tage)

Modellauswahl und Modellevaluation

Abstimmung der Hyperparameter eines Schätzers

Kreuzvalidierung

Gittersuche

Evaluationsmetriken

Klassifikation


Projektarbeit (ca. 3 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse

Deep Learning

Einführung Deep Learning (ca. 1 Tag)

Deep Learning als eine Art von Machine Learning


Grundlagen in neuronalen Netzen (ca. 4 Tage)

Perceptron

Berechnung neuronaler Netze

Optimierung der Modellparameter, Backpropagation

Deep‐Learning‐Bibliotheken

Regression vs. Klassifikation

Lernkurven, Überanpassung und Regularisierung

Hyperparameteroptimierung

Stochastischer Gradientenabstieg (SGD)

Momentum, Adam Optimizer

Lernrate


Convolutional Neural Network (CNN) (ca. 2 Tage)

Bildklassifizierung

Convolutional‐Schichten, Pooling‐Schichten

Reshaping‐Schichten, Flatten, Global‐Average‐Pooling

CNN‐Architekturen ImageNet‐Competition

Tiefe neuronale Netze, Vanishing Gradients, Skip‐Verbindungen, Batch‐Normalization


Transfer Learning (ca. 1 Tag)

Anpassen von Modellen

Unüberwachtes Vortrainieren

Image‐Data‐Augmentation, Explainable AI


Regional CNN (ca. 1 Tag)

Objektlokalisierung

Regressionsprobleme

Verzweigte neuronale Netze


Methoden der kreativen Bilderzeugung (ca. 1 Tag)

Generative Adversarial Networks (GAN)

Deepfakes

Diffusionsmodelle


Recurrente neurale Netze (ca. 2 Tage)

Sequenzanalyse

Rekurrente Schichten

Backpropagation through time (BPTT)

Analyse von Zeitreihen

Exploding und Vanishing Gradient Probleme

LSTM (Long Short‐Term Memory)

GRU (Gated Recurrent Unit)

Deep RNN

Deep LSTM


Textverarbeitung durch neuronale Netze (ca. 2 Tage)

Text‐Preprocessing

Embedding‐Schichten

Text‐Klassifizierung

Sentimentanalyse

Transfer‐Learning in NLP

Übersetzungen

Seqence‐to‐Sequence‐Verfahren, Encoder‐Decoder‐Architektur


Sprachmodelle (ca. 1 Tag)

BERT, GPT

Attention‐Schichten, Transformers

Textgeneration‐Pipelines

Summarization

Chatbots


Deep Reinforcement Learning (ca. 1 Tag)

Steuerung dynamischer Systeme

Agentensysteme

Training durch Belohnungen

Policy Gradients

Deep‐Q‐Learning


Bayes'sche neuronale Netze (ca. 1 Tag)

Unsicherheiten in neuronalen Netzen

Statistische Bewertung von Prognosen

Konfidenz, Standardabweichung

Unbalancierte Daten

Sampling‐Methoden


Projektarbeit (ca. 3 Tage)

Zur Vertiefung der gelernten Inhalte

Präsentation der Projektergebnisse

ITIL® 4 Foundation in IT Service Management

Verstehen der Schlüsselkonzepte von IT-Service Management (ca. 2 Tage)

Einführung in den Servicegedanken

Das ITIL®-Qualifizierungsschema

Definition wichtiger Begriffe im IT-Service Management ITSM

Schlüsselkonzepte zur Wertschöpfung durch Dienste

Schlüsselkonzepte des Beziehungsmanagements


Grundlegende konzeptionelle Bausteine von ITIL® (ca. 2 Tage)

Die ITIL® Guiding Principles

Art, Verwendung und Interaktion der Leitprinzipien

Die vier Dimensionen von Service Management

Das ITIL® Service Value Systems (SVS) und seine Komponenten

Die Service Value Chain (Wertschöpfungskette), ihre Aktivitäten und deren Zusammenspiel


Künstliche Intelligenz (KI) im Arbeitsprozess

Vorstellung von konkreten KI-Technologien im beruflichen Umfeld

Anwendungsmöglichkeiten und Praxis-Übungen


Die ITIL® Practices (ca. 3 Tage)

Die sieben wichtigsten ITIL® Practices

Der Zweck weiterer acht ITIL® Practices


Projektarbeit, Zertifizierungsvorbereitung und Zertifizierungsprüfung (ca. 3 Tage)

ITIL® ist eine eingetragene Marke von AXELOS Limited, verwendet mit der Genehmigung von AXELOS Limited. Alle Rechte vorbehalten.

PRINCE2® Foundation in Project Management, 7th edition

Einführung in das Projektmanagement basierend auf PRINCE2® (ca. 1 Tag)

Definition und Charakteristiken eines Projekts

Projektsteuerungskreislauf des Projektmanagements und die sechs Projektdimensionen

Herausforderungen im Projektmanagement – warum scheitern Projekte?

Vorteile der PRINCE2® Projektmanagement-Methode

Kunden-Lieferanten-Umgebungen

Projekte in einem kommerziellen Umfeld

Struktur der PRINCE2®-Methode und ihre fünf integrierten Bausteine


Die PRINCE2® Grundprinzipien (ca. 1 Tag)

Die sieben Grundprinzipien von PRINCE2®

Aussagen und Inhalte der Grundprinzipien

Beziehung zwischen den Grundprinzipien und den Themen von PRINCE2®

Anpassung von PRINCE2® an die Projektumgebung


Künstliche Intelligenz (KI) im Arbeitsprozess

Vorstellung von konkreten KI-Technologien im beruflichen Umfeld

Anwendungsmöglichkeiten und Praxis-Übungen


Die Bedeutung von Menschen für PRINCE2® Projekte (ca. 1 Tag)

Änderungsmanagement

Führung und Management

Kommunikation im Projekt


Die sieben Themen von PRINCE2® (ca. 3 Tage)

Business Case (Nutzenmanagement-Ansatz und Nachhaltigkeitsmanagement-Ansatz)

Organisation (Projektstruktur, Rollen und Verantwortlichkeiten)

Erstellung von Plänen

Qualitätsplanung und Qualitätskontrolle

Risikomanagement

Issue-Management

Steuerung des Projektfortschritts


Die sieben Prozesse von PRINCE2® (ca. 2 Tage)

Zusammenspiel der sieben PRINCE2® Prozesse im Projektablauf

Aktivitäten in den jeweiligen PRINCE2® Prozessen

Vorbereiten, Lenken und Initiieren eines Projekts

Steuern einer Phase

Managen der Produktlieferung

Managen der Phasenübergänge

Abschließen eines Projekts


Projektarbeit, Zertifizierungsvorbereitung und Zertifizierungsprüfung (ca. 2 Tage)

PRINCE2® ist eine eingetragene Marke von AXELOS Limited, verwendet mit der Genehmigung von AXELOS Limited. Alle Rechte vorbehalten.



Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

Die Programmiersprache Python wird vorausgesetzt, Vorkenntnisse im Bereich Data Analytics werden empfohlen.

In diesem Lehrgang besitzt du relevante Kenntnisse zu den Themen Machine Learning und Deep Learning. Du kennst die wichtigsten Gründe für die Verwendung des Machine Learning, Anwendungsgebiete sowie die verschiedenen Kategorien und Konzepte des Maschinellen Lernens. Zudem verstehst du die Einsatzbereiche von Deep Learning und die Funktionsweisen neuronaler Netzwerke. Du bist in der Lage, maschinelles Lernen bereitzustellen und Prozesse zu dokumentieren.

Zusätzlich verfügst über wichtiges Fachwissen, um die Prozess- und Servicequalität von Unternehmen zu bewerten und zu optimieren und beherrschst darüberhinaus die Begriffe und Konzepte der IT Infrastructure Library (ITIL®). Des Weiteren kannst du in PRINCE2®-Projekten mitarbeiten, kennst deren Ablauf und die Begrifflichkeiten. Du bist auch in der Lage, IT-Projekte zu planen, durchzuführen und Erfolge zu messen. 

Informatiker:innen, Mathematiker:innen, Elektrotechniker:innen sowie Personen mit Studium der (Wirtschafts-) Ingenieurwissenschaften

Als KI-Spezialist:in ist man in den Fachbereichen Machine Learning und Deep Learning hochqualifiziert, kann branchenübergreifend eingesetzt werden und ist am Arbeitsmarkt entsprechend vielfach nachgefragt. Man kann große Datenmengen nach Mustern und Modellen untersuchen. Deep Learning kommt dabei häufig im Rahmen künstlicher Intelligenz für die Gesichts-, Objekt- oder Spracherkennung zum Einsatz.

Mit Kenntnissen im IT-Service und Projektmanagement mit ITIL® und PRINCE2® weist du deine zusätzliche Qualifikation auf, die vor allem in der IT-Branche vielfach nachgefragt ist.

Didaktisches Konzept

Deine Dozierenden sind sowohl fachlich als auch didaktisch hoch qualifiziert und werden dich vom ersten bis zum letzten Tag unterrichten (kein Selbstlernsystem).

Du lernst in effektiven Kleingruppen. Die Kurse bestehen in der Regel aus 6 bis 25 Teilnehmenden. Der allgemeine Unterricht wird in allen Kursmodulen durch zahlreiche praxisbezogene Übungen ergänzt. Die Übungsphase ist ein wichtiger Bestandteil des Unterrichts, denn in dieser Zeit verarbeitest du das neu Erlernte und erlangst Sicherheit und Routine in der Anwendung. Im letzten Abschnitt des Lehrgangs findet eine Projektarbeit, eine Fallstudie oder eine Abschlussprüfung statt.

 

Virtueller Klassenraum alfaview®

Der Unterricht findet über die moderne Videotechnik alfaview® statt  - entweder bequem von zu Hause oder bei uns im Bildungszentrum. Über alfaview® kann sich der gesamte Kurs face-to-face sehen, in lippensynchroner Sprachqualität miteinander kommunizieren und an gemeinsamen Projekten arbeiten. Du kannst selbstverständlich auch deine zugeschalteten Trainer:innen jederzeit live sehen, mit diesen sprechen und du wirst während der gesamten Kursdauer von deinen Dozierenden in Echtzeit unterrichtet. Der Unterricht ist kein E-Learning, sondern echter Live-Präsenzunterricht über Videotechnik.

 

Die Lehrgänge bei alfatraining werden von der Agentur für Arbeit gefördert und sind nach der Zulassungsverordnung AZAV zertifiziert. Bei der Einreichung eines Bildungsgutscheines oder eines  Aktivierungs- und Vermittlungsgutscheines werden in der Regel die gesamten Lehrgangskosten von deiner Förderstelle übernommen.
Eine Förderung ist auch über den Europäischen Sozialfonds (ESF), die Deutsche Rentenversicherung (DRV) oder über regionale Förderprogramme möglich. Als Zeitsoldat:in besteht die Möglichkeit, Weiterbildungen über den Berufsförderungsdienst (BFD) zu besuchen. Auch Firmen können ihre Mitarbeiter:innen über eine Förderung der Agentur für Arbeit (Qualifizierungschancengesetz) qualifizieren lassen.

Gerne beraten wir dich kostenfrei. 0800 3456-500 Mo. - Fr. von 8 bis 17 Uhr
kostenfrei aus allen deutschen Netzen.
Kontakt
Gerne beraten wir dich kostenfrei. 0800 3456-500 Mo. - Fr. von 8 bis 17 Uhr kostenfrei aus allen deutschen Netzen.